О границах живого и неживого

топ 100 блогов justavortex24.04.2023

Уважаемый френд grnsta известен своими попытками найти пересечения восточных учений и научной точки зрения. Вдохновил же меня на это коротенькое эссе френд klyos вот этими статьями о золотом сечении.

Древними греками были описаны так называемые конические сечения. Действительно, достаточно взять два конуса, соосно соединенные в вершине, и мы получим круг, глядя сверху, а если начнем их резать, то эллипс, параболу или вот гиперболу, как на рисунке.

О границах живого и неживого

Также в те времена были описаны известные всем со школьной скамьи тригонометрический функции. Только определять их куда проще не через прямоугольный треугольник, а через окружность с единичным радиусом. Тогда все соотношения, что нам приходилось зубрить на алгебре, становятся видны сами собой, и мы можем пойти дальше.

О границах живого и неживого

Для решения чрезвычайно широкого круга практических задач, в частности, чтобы получить те самые два конуса, с которых мы начали, также в незапамятные времена были придуманы полярные координаты. Для определения геометрического места любой точки внутри этого конуса достаточно ввести длину отрезка от центра (полюса) до точки и косинус угла между этим отрезком и полярной осью. Вы скажете, что это же у нас выходит треугольник — и будете правы. Конус ведь фигура вращения. Для того, чтобы треугольник стал конусом, его необходимо начать вращать. Потом стало ясно, что описать это вращение математически, оказывается очень удобно использовать комплексную плоскость. Оказывается, удивительное число i, которого нет среди действительных, существует и позволяет описать бесконечное множество точек, соответствующих каждой из точек треугольника, ставшего во вращении конусом. 

Таким образом появляются гиперболические функции.

Посмотрите, i связано с трансцендентальными числами exp и pi причудливым равенством exp^i*pi=1

Существование таких чисел уже намекает на то, что нашу вселенную писали таким образом, чтобы они работала по одинаковым законам вне зависимости от масштаба. С каким бы телескопом или микроскопом вы не смотрели на окружность, вы не найдете в ней «прямого пикселя». 

exp не менее интересна. с переходом в комплексную плоскость вы также не сможете обнаружить никаких «прямых пикселей» при рассмотрении показательной кривой с касательной под углом pi/4. Число «e» имеет бесконечное количество знаков после запятой, потому и галактика и микромир строятся по одинаковым законам. И если позволить разгуляться фантазии, то и тот, для кого вся наша галактика всего лишь частица микромира, имеет перед собой то же самое значение экспоненты.

Законы экспоненциальной зависимости — одни из базовых в этом мире.

О границах живого и неживого

Именно по ним растут колонии живых организмов, например. По закону обратной экспоненты происходит рост энтропии в замкнутой системе: тормозится автомобиль, разряжается конденсатор, остывает чайник.

Но взгляните на эти графики по-другому, разве не похожи они на распускающийся цветок? Да, но не совсем...

Итак, полярные координаты дают треугольник, а начав его вращать мы получаем конус. А что будет, если мы начнем учитывать стремление материи существовать по экспоненциальным законам?

Тогда мы с вами и придем к гиперболическим функциям.

О границах живого и неживого
О границах живого и неживого

Называются они точно также, только к традиционному «синус», например, добавляется «гиперболический».

Теперь это уже не треугольник, а куда более интересная фигура, приближенная к тому, что мы видим вокруг в окружающей нас природе.

Гиперболические функции задаются следующими формулами:

  • гиперболический синус:
О границах живого и неживого
  • гиперболический косинус:
О границах живого и неживого


и т.д. Видите, появилась экспонента. Оказывается, гиперболические функции связаны с привычными нам тригонометрическими опять-таки через комплексные числа.

Гиперболические функции выражаются через тригонометрические функции от мнимого аргумента.


О границах живого и неживого


О границах живого и неживого

.

 Таким образом в комплексном пространстве гиперболическая функция также превращается во вращающуюся область точек, например косинус становится чем-то вроде вазы. Обратные же гиперболические функции так и называют — area, то есть описывающие площадь фигуры вращения, точнее сектора единичной гиперболы, там появляется натуральный логарифм.

Ну это все вещи известные теперь дальше.

У нас тут про золотое сечение. 

Формула для него следует из уравнения, составленного из условий его определения:

О границах живого и неживого

Как несложно заметить, число «тау» введенное в статье, на которую я ссылаюсь ниже, также является как минимум иррациональным. Идея, изложенная тут, http://www.trinitas.ru/rus/doc/0232/009a/02321057.htm при всей простоте, очень фундаментальная. Авторы предлагают ввести семейство функций, основанных не на экспоненте, а на числе золотого сечения 1,618...

Например:

Гиперболический синус Фибоначчи

О границах живого и неживого


Гиперболический косинус Фибоначчи

О границах живого и неживого

Что тут появляется интересного? Рост многих (может всех, не знаю, надо подумать) живых и неживых объектов происходит по показательным законам. Создателя можно понять: (exp x)'=exp x. Масштабировать замечательно — все само собой. Но видимо оказалось, что основание 2.7... дает слишком крутой рост, а стремление природы к гармонии подсказало следующее красивое трансцендентальное число — 1,618.

Функция должна быть непременно показательной, масштабировать все равно удобно.

О границах живого и неживого

Ну что там, за логарифм вынес и всех дел. При заданном «а» это константа. По крайней мере авторы статьи ссылаются на то, что первооткрывателю удалось с помощью гиперболических функций Фибоначчи математически описать филлотаксис растений. А там сами понимаете сколько подобных вещей, от галактик и антициклонов до микромира.

О границах живого и неживого

Ну и вот, а поскольку фигура вращения, то именно так и растут в природе ракушки и всякое прочее)

Да, в свое время греки изучили много кривых, например эвольвенту и трактриссу. И вот интересное дело: там где кривые выходили опытами без трения, та же эвольвента, в параметрическом уравнении нет показательной функции. Но стоит появиться трению (трактрисса например, получается как след от волочения тела, стоящего в стороне от траекотории «волочителя», по песку, — немедленно появляется натуральный логарифм.

Я уже неоднократно вам говорил, что считаю гиперболические кривые неизбежным следствием взаимодействия со средой. Рост растения или формирование галактики связано с преодолением противодействия хаоса если хотите.

Оставить комментарий

Предыдущие записи блогера :
Архив записей в блогах:
Стенд Спартан Блейдс, на котором в этот раз не было Харси - он болеет, к сожалению. Владельцы были, все ножи дали в руки - как фикседы, так и фолдеры - играйся сколько хочешь)) ⠀ Сегодня посмотрим на складники. ⠀ The Spartan-Harsey Folder - линейка ножей, которая любима очень ...
Очередной подвиг девочек-дизайнеров, который направили на повышение патриотизма. На сей раз отличились в парке "Патриот". Или мы что-то не знаем о российской армии. ...
Квашеную капусту готовят в России, Украине и Беларуси, в чопорной Германии и в состоятельной Австрии. Поляки, чехи, болгары, грузины — все эти народы считают соленый шинкованный овощ истинно своим. Однако классический рецепт квашеной капусты появился благодаря китайцам! А монголы, ...
Где родилась моя мать. У неё в паспорте в графе "место рождения" написано - поселок Караул Усть-Енисейского района Красноярского края. Дело в том, что пока дед был в Иране (гуглим "Англо-советская оккупация Ирана"), аккурат под 16 октября 1941 в Москве началась паника. И, извините, ...
Я ведь, вдобавок к моим пионерским лагерным кошмарам, был ещё и в политеховском лагере на черноморских болотах. Жуткое место на берегу самого лютого, самого малярийного моря, недаром называемого ЧЁРНЫМ... Моя тётка туда поварихой сбежала, подальше от беспредела коммуняк, когда поняла что ...