«Диагональный аргумент» всё

Будем рассматривать числа в двоичной системе счисления (возможность или невозможность пронумеровать числа не может зависеть от системы счисления, поскольку она — лишь способ записи чисел).
Диагональный аргумент: предположим, что мы занумеровали все действительные числа на отрезке [0, 1). Построим число, каждая цифра которого равна изменённой цифре, стоящей на диагонали в нашей нумерации. Это число не может быть ни в одной строке данного списка, однако при любой нумерации оно всё ещё действительное и принадлежит к указанному отрезку, а потому занумеровать все числа на этом отрезке невозможно.
Опровержение.
Выберем такую нумерацию чисел, что на диагонали никогда не будет встречаться цифра 1. Следует отметить, что возможно бесконечное количество таких нумераций, что легко проверяется на примере списков рациональных чисел конечной длины: с ростом длины количество возможных комбинаций только растёт.
Канторово «неуместное число», таким образом, будет числом 0,11111… = 0,(1)
Согласно аксиомам математики, в двоичной системе счисления 0,(1) = 1. То есть существует бесконечное количество нумераций, в которых «неуместное число» лежит за пределами выбранного для рассмотрения отрезка и, таким образом, тезис «при любой нумерации является действительным, принадлежащим к рассмотренному отрезку» для него не верен.
Шах и мат, аметисты, расходимся.
|
</> |