УТЯТКО
![топ 100 блогов](/media/images/default.jpg)
![УТЯТКО УТЯТКО](/images/main/utyatko-366930.jpg?from=http://l-stat.livejournal.net/img/userinfo.gif?v=17080?v=143.3)
Поскольку современная мода требует от любого продвинутого человека выкатить проработанный проект межпланетного транспорта
Два одинаковых космических аппарата запускаются с Земли на обычных ракетах-носителях, а затем путем серии гравитационных маневров выводятся на высокоэллиптические орбиты с одинаковыми точками перигелиев на расстоянии 0.1 астрономической единицы от Солнца, но с противоположными друг другу направлениями обращения по орбитам. Аппараты представляют из себя миниатюрные копии “Ориона” (поэтому ниже мы их будем называть мини-Орионами, МО). Каждый МО оснащен кормовой установкой для выброса небольших термоядерных бомб и пулеметом, выстреливающим самонаводящиеся пули со свинцовыми наконечниками. Когда МО сближаются друг с другом на встречных курсах вблизи перигелия, они начинают стрелять друг в друга пулями. Пули наводятся на выбрасываемые бомбы и детонируют их. Плазма от взрывов подталкивает МО. За счет этого оба МО сбрасывают лишнюю скорость (она равна (sqrt(2)-1)*100 = 40 км/с) и переходят на круговые орбиты с тем же перигелием.
После успешного завершения первой стадии, на Земле проводится подготовка к следующей фазе развертывания системы. Когда там все готово, действие опять переходит на околосолнечную орбиту. Один из МО начинает выбрасывать бомбы, а второй – стрелять пулями. Термоядерными взрывами МО-1 разгоняется до 200 км/с в направлении Земли. После окончания разгона он сбрасывает все оставшиеся запасы самонаводящихся пуль и навсегда покидает нашу историю (и Солнечную систему). Пули выстраиваются в постепенно растягивающуюся колонну, длина которой при пролете рядом с Землей достигает нескольких сотен тысяч километров.
Когда они подлетают к цели, на Земле многоразовая «химическая» первая ступень подбрасывает вертикально вверх большой «Орион» (БО), выводя его за пределы атмосферы (для подбрасывания на высоту 200 км потребуется разогнать его до 2 км/сек). Дальше БО выкидывает бомбы, подрываемые ударами подлетающих пуль, и разгоняется сначала до орбитальной скорости, а потом переходит на эллиптическую орбиту вокруг Солнца с уже привычным нам перигелием 0.1 а.е. У перигелия он встречается с пулями МО-2 на встречном курсе, и термоядерными взрывами тормозится до круговой скорости. Данный БО – носитель. Его полезная нагрузка – несколько десятков новых МО. Один из этих новых МО отправляется к Земле, где пули от него используются для разгона второго БО, который выводится на круговую орбиту, встречную к БО-1, заместив таким образом МО-2.
В итоге у нас имеется два БО на встречных орбитах. Каждый содержит по несколько десятков МО, готовых в любой момент отправиться к Земле или любой другой точке Солнечной системы, и помочь другим транспортным БО и исследовательским МО разогнаться или затормозиться. Транспортные БО в том числе используются для периодического обновления запасов МО на околосолнечной орбите, так что такая система может действовать неограниченно долго, пока земляне будут ее снабжать расходными материалами: самонаводящимися пулями, термоядерными минибомбами и мини-«Орионами».
Несколько оценок по параметрам пуль и бомб. NIF обеспечивает Q=0.01, используя импульс с энергией 2 МДж и продолжительностью порядка 10 наносекунд. Если мы будем использовать пули с 100-граммовыми свинцовыми наконечниками, то при попадании пули со скоростью 200 км/с во внешнюю свинцовую оболочку неподвижной бомбы получится около 2000 МДж рентгеновского излучения (500 кг тротилового эквивалента). Можно сократить время высвечивания этого рентгена до порядка 10 наносекунд, если использовать наконечники и оболочки с толщиной порядка 1 мм. Можно ожидать, что, благодаря тысячекратному увеличению количества энергии на абляционное обжатие заряда, Q значительно превысит единицу. Энергию от взрыва первичного термоядерного заряда можно использовать для подрыва вторичного заряда, таким образом увеличив эффективное Q до любого желаемого значения. Поскольку делящихся материалов в бомбах нет, радиоактивное загрязнение будет практически отсутствовать (нейтроны от реакции D+T можно поглотить, если добавить бор в оболочку заряда).
Некоторые добрые люди могут задаться вопросом – нельзя ли использовать несущиеся к Земле МО для массового убийства злых людей. Вынужден разочаровать добрых людей – МО весом в 20 тонн при попадании в верхние слои атмосферы планеты даст взрыв в 100 килотонн тротилового эквивалента. Как показывает пример Челябинска, разрушения на поверхности в этом случае в основном сведутся к выбитым стеклам. Внимательные читатели могут заметить, что удельный тротиловый эквивалент свинца в предыдущем параграфе в два раза меньше, чем в данном. Разгадка проста – максимальная температура достигается при столкновении двух кусков свинца одинаковой массы, и если один из них до столкновения покоился – половина энергии уйдет в бесполезную кинетическую энергию струи свинцовой плазмы.
Кстати, о максимальной температуре. Пытливый читатель может спросить – почему бы для большей эффективности не запустить МО на более низкую орбиту вокруг Солнца? Однако, имеется очевидная проблема - нагрев аппарата из-за солнечного излучения. А ведь по проекту аппараты должны месяцами (МО) и годами (БО) функционировать на круговой орбите. Для защиты можно использовать систему из щита с высоким коэффициентом отражения и большого радиатора, расположенного в тени от щита. Максимальное отношение площадей радиатора и щита, при котором радиатор не вылезет за пределы тени, по порядку величины совпадает с угловым диаметром Солнца с точки зрения аппарата. На 0.1 а.е. нетеплопроводящая площадка под солнечными лучами нагреется до равновесной температуры 1300К. Но, полагая коэффициент отражения щита равным 90% и площадь радиаторов в 20 раз большую площади щита, получим, что температура аппарата составит вполне терпимые 350К. На 0.05 а.е. равновесная температура составляет 1800К, а максимальная площадь радиатора вдвое меньше, так что температура аппарата без активного охлаждения будет нехорошие 600К.
Для интересующихся вопросами практического космоплавания замечу, что разгонять МО нужно под таким углом к направлению движения пуль, чтобы относительная скорость никогда не падала ниже 200 км/с. Максимальная скорость плазмы при взрыве реальной термоядерной бомбы – несколько тысяч км/сек. Приблизительно таким же будет предел скорости для запусков с помощью вышеописанной системы. Для межзвездных перелетов маловато, но для отправки телескопа в гравитационный фокус Солнца хватит.
Главная проблема на пути создания УТЯТКО – нужны снаряды, способные наводиться с точностью порядка 1 см при движении с относительными скоростями в сотни км/сек. Ключ очевидно лежит в дальнейшем совершенствовании микроэлектроники и процветании людей, служащих драйвером этого совершенствования. Я разумеется подразумеваю хипстеров, ежегодно покупающих новые смартфоны…