Геометрия играючи или Почему сумма углов треугольника 180° ?
fotovivo — 24.03.2017 Вдогонку ко вчерашнему:Играем с мозаикой под сказку по геометрии:
Жили-были треугольники. Такие похожие, что просто копия друг друга.
Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
то и верхушки их были на одном уровне, под линеечку:
Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
А мы уже знаем - когда они стоят верхушками ровно в линию,
то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!
Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла).
- Где у треугольников одинаковые стороны? А где уголки одинаковые?
Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
Заскользили и съехали как с горки; а горки-то у них одинаковые!
Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.
Огляделись треугольники и заметили интересную особенность.
Везде, где их углы вместе сошлись - непременно встретились все три угла:
самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
Они даже ленточки цветные повязали, что б сразу было заметно, где какой.
И получилось, что три угла треугольника, если их совместить -
составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,
______________________Совершим параллельный перенос треугольника АВС вдоль оси ОХ
на вектор АВ равный длине основания АВ.
Прямая, DF проходящая через вершины С и С1 треугольников
параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
отрезки h и h1 (высоты равных треугольников) равны.
Таким образом основание треугольника А2В2С2 параллельно основанию АВ
и равно ему по длине (т.к. вершина С1 смещена относительно С на величину АВ).
Треугольники А2В2С2 и АВС равны по трем сторонам.
А стало быть углы ∠А1 ∠В ∠С2, образующие развернутый угол, равны углам треугольника АВС.
=> Сумма углов треугольника равна 180°
С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
на кусочках мозаики даже малышу может быть понятно.
Зато традиционное школьное:
опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых
ценно тем, что дает представление о том - почему это так,
почему сумма углов треугольника равна развернутому углу?
- Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.
Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.
Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
(такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.
_______________________________________________________________-------________________________________________________________________
/\__||_/\__||_/\__||_/\__||_/\__| )0( |_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/\__||_/\__||_/\__||_/\__| )0( |_/\__||_/\__||_/\__||_/\__||_/\
Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
может быть составлен из двух треугольников,
соответственно сумма углов четырехугольника: 180° + 180°= 360°
Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
Сколько на чертеже фигур, состоящих из 6-ти треугольников?