Евгений Лотош. Ошибки и ляпы в фантастике. Через тернии к звездам

топ 100 блогов 1_9_5_731.08.2010 «Звездные войны» Лукаса породили целую отрасль астрофантастики (литература, кино, компьютерные игры), специализирующейся на космических боях. Могучие эскадры гигантских многокилометровых кораблей сходятся в смертельных битвах, юркие истребители шмыгают в полях астероидов, орбитальные бомбардировки стирают с лица планет целые цивилизации, а те, в свою очередь, сшибают атакующих из мощных антикосмических орудий. Да, Лукас начал свою речь на премьере первого (по счету) фильма серии с фразы «Разумеется, нам известно, что в космосе выстрелы не слышны…». Однако это его заявление мало что дало. «Если нечто круто выглядит, то так и должно быть» — эта заповедь скверной фантастики служит основной причиной игнорирования элементарных законов физики. Я не слишком увлекаюсь кино, так что не могу сказать на его счет ничего определенного, но известных мне писателей, руководствовавшихся при написании книг хотя бы классической механикой Ньютона, можно пересчитать по пальцам. Аллен, Дивов, Азимов, Ефремов, Лем и Хайнлайн… ну, разве что еще кого-то пропустил.

Взглянем поближе на типичные ляпы, допускаемые в текстах и фильмах этого направления.

Евгений Лотош. Ошибки и ляпы в фантастике. Через тернии к звездам

Считается, что у космического корабляимеетсямаксимальная скорость. Этот бред является следствием прямого переноса морских сражений в космос. Земной корабль (водный или воздушный) действительно имеет максимальную скорость — ему при движении приходится преодолевать сопротивление среды. Но вот в космосе, представляющем собой почти чистый вакуум, сопротивление отсутствует (точнее, им можно пренебречь). И единственный теоретический барьер для вещественного тела — это скорость света. Кроме того, скорость всегда относительна. На Земле она отсчитывается от земной поверхности, а в космосе? От Солнца? От Альфы Центавра? От центра масс туманности Андромеды?

Оперировать в безвоздушном пространстве можно исключительно ускорением. Максимальное же ускорение зависит, помимо двигателя, от двух факторов: выносливости экипажа и прочности несущих конструкций корабля («гравикомпенсаторы» мы в этой ситуации не учитываем, поскольку не знаем, что это такое). От них также зависит минимальный радиус разворота. Декларировать же, что данный корабль может достичь конкретной максимальной скорости, в общем случае некорректно.

Оружие. Здесь доминируют следующие разновидности: энергетические (лазеры и плазма) и реактивные (ракеты). Изредка также попадаются кинетические виды (пули и снаряды, таинственный «mass driver» и т.д.), но это скорее исключение. Оставим в стороне оружие, основанное на плазме, антивеществе и масс-драйверах, поскольку о его параметрах можно только гадать, и рассмотрим то, что нам известно.

Если принять во внимание, что «остановиться» в космосе невозможно (можно лишь уравнять векторы скоростей относительно друг друга), то можно легко сообразить, что на встречных курсах корабли будут пролетать мимо друг друга за настолько малые промежутки времени, что прицелиться толком будет невозможно — просто в силу инерционности орудийных стволов. В лучшем случае корабли умудрятся повиснут на некотором расстоянии друг от друга и начнут обмениваться залпами — но такая тактика может быть принята лишь самоубийцами. Космический бой — маневренный, и именно поэтому стрельба всегда будет вестись на огромных расстояниях (сотни тысяч километров — это почти вплотную…). Следовательно, даже перемещающиеся со скоростью света лазерные лучи при минимальной маневренности противника будут запаздывать настолько, что прямое попадание окажется чисто случайным событием. Про медленные кинетические снаряды в этой ситуации можно забыть. Более того, они могут оказаться опасными для самого стрелка — если тот, выстрелив в противника, двинется в его сторону и ненароком обгонит собственные выстрелы (которые ускоряться не умеют).

Единственным приемлемым оружием в такой ситуации оказываются ракеты, умеющие наводиться на цель и корректировать свой курс. Однако в силу (относительно) низких скоростей передвижения и яркого выхлопа они будут засечены противником вскоре после запуска и, скорее всего, сбиты контрракетами. Поэтому при равных технологиях космическая схватка сведется к банальному соревнованию «у кого запас ракет больше». Это, в свою очередь, означает, что у малого судна не будет никаких шансов справиться с большим.

При этом посылать в атаку TIE Bomber'ы и вообще любые управляемые человеком аппараты в данной ситуации не будет никакого смысла. Они окажутся заведомо менее маневренными и при этом куда более крупными целями, чем ракеты.

Еще, кстати, один аспект, который никто даже и не пытается учитывать. Вакуум — не атмосфера, и выпущенный во врага заряд (ракета, пуля…) никуда не упадет. Он продолжит свой путь в бесконечность, пока не столкнется с препятствием. Если в отдалении от планеты такое безобразие, скорее всего, сойдет с рук, то поблизости от нее (особенно с применением интеллектуального оружия типа ракет) запросто оставит местных без половины орбитальной инфраструктуры. Спутнику связи, в отличие от многажды бронированного линкора, хватит одного попадания по касательной. Да и вообще не похоже, что возможность напороться, пусть и с исчезающе малой вероятностью, на пулю, выпущенную сотни и тысячи лет назад, будет греть душу космических путешественников.

Последнее в оружейной теме — это поражающие факторы оружия. В земных условиях это кинетическая энергия самого заряда (пуля или снаряд), ударной волны и энергии взрыва, а также электромагнитное, включая тепловое, световое и проникающую радиацию в случае атомного оружия, излучение.

Итак, примем для определенности, что боевой космический корабль — большой (сотни метров или даже километры в длину), так что попасть в него — не проблема. При этом корабль представляет собой тяжелобронированную груду металла массой в десятки тысяч и даже миллионы тонн. Чем можно нанести ущерб такой махине? Пули и прочую кинетику отбрасываем сразу. Остаются лазер и боеголовки ракет.

Учтем, что сама по себе дырка в обшивке мало что значит: повреждение может быть, например, автоматически заклеено полужидким содержимым (наподобие густой смолы) внешней оболочки, а разгерметизированный отсек — банально заблокирован герметичными дверями. При этом разгерметизация даже не обязательно означает гибель команды: достаточно сидеть на боевом посту в скафандре. Следовательно, чтобы нанести серьезный урон, необходимо зацепить действительно важный узел — двигательную установку, топливные контейнеры (при условии, что топливо чувствительно к поражающим факторам оружия), вычислительный узел, склад боеприпасов или центр системы жизнеобеспечения. Металл — штука, как известно, тугоплавкая, так что прошить его лазером требует очень больших энергий. Учитывая, что критичные узлы будут бронированы многократно, а также тот факт, что до бесконечности шпарить лучом в одно и то же место возможности не будет, получаем, что необходимый лазерный импульс требует гигантских энергий. Оставим в стороне вопросы генерации такого луча и перегрева лазерного орудия. Но откуда возьмется сама по себе такая энергия? В нынешних условиях для этого потребуется взрыв атомной бомбы, вот только сконцентрировать его мощь в одной точке не удастся. Поэтому если уж вы горите желанием поставить лазерную пушку на свой корабль, в первую голову позаботьтесь об энергосистеме.

С ракетами проще. Они не требуют таких уж больших запасов энергии для перемещения. Начальное ускорение да некоторые маневры при подлете к цели — все, что ей нужно. Однако как они смогут воздействовать на саму цель? Прямым столкновением? Отпадает — несопоставимые массы. Взрыв? В вакууме ударная волна отсутствует, так что на долю цели придется лишь незначительная доля его энергии, и даже сила атомного взрыва (включая проникающую радиацию) по большому счету пропадет впустую. Разве что сенсоры врага ослепит. А как достать критические узлы? Пожалуй, здесь у ракеты шансов куда меньше, чем даже у лазера. Единственный эффективный метод — каким-то образом доставить боеголовку внутрь корабля противника, в результате чего корабль получит всю энергию взрыва. А если внутри есть атмосфера, то и взрывная волна получится. Но вот как это сделать — большой вопрос.

Кстати, лазерный луч в вакууме невидим, а перемещается со скоростью света. Это я вспоминаю о лазерных выстрелах, которые в киношной реализации сильно смахивают на очереди трассирующих пуль.

Астероиды. Гигантские скопления здоровых каменюк, ужасно опасные для путешествий из-за опасности столкновений, непроницаемые для радаров, служащие убежищем для беглецов и пиратов и серьезным препятствием для внутрисистемного сообщения… Ну-ну.
Примем во внимание, что радиус поясов астероидов составляет сотни миллионов, зачастую — миллиарды километров. Так, внутренний пояс астероидов Солнечной системы расположен между орбитами Марса (ок. 230 млн км. от Солнца) и Юпитера (ок. 800 млн. км.), пояс Койпера простирается до 50 а.е. (ок. 7,5 млрд км.), а внешние границы облака Оорта оцениваются примерно в 105 а.е. (ок. 16 млрд км.). Если предположить хоть сколь-нибудь высокую плотность вещества в астроидных кольцах, окажется, что по массе они превосходят все прочие объекты в звездной системе, вместе взятые. Подобные скопления вещества просто не могут существовать в сформировавшейся системе. Они быстро втянут в себя все прочие тела (включая планеты) и разорвут на части звезду.

На деле плотность астероидов в поясах чрезвычайно мала. В Солнечной системе на конец 20 века было зарегистрировано около 50 тысяч малых тел. Даже если предположить, что все они расположены в районе орбиты Марса на идеальной окружности, получим, что в среднем один астероид приходится примерно на тридцать тысяч километров. При этом тело размером в пару километров считается крупным. На деле же «ширина» поясов астероидов сопоставима с расстояниями между планетами. Конечно, существует масса неучтенных тел — некоторые слишком малы, некоторые слишком далеко, чтобы быть обнаруженными (вообще обнаружение тела, даже планеты, в пространстве — та еще задача). Но и пространства, на которых они рассеяны, тоже поражают воображение. Поэтому натолкнуться на астероид (равно как и получить метеоритом по башке на Земле) можно лишь по чистой случайности. Ну, или очень сильно этого захотев. Да и то в последнем случае точное попадание зависит от мастерства пилота.

Кстати, еще один момент, весьма любимый авторами космической фантастики. Почему-то нападения на внутренние планеты осуществляются методом прохождения флота через всю систему из-за орбиты самой внешней планеты. Например, если завтра зеленые человечки с Альфа Центавра захотят поработить Землю, у них не останется другого выхода, кроме как пролететь в плоскости эклиптики все расстояние между орбитами Плутона и Земли (про пояс Койпера и облако Оорта авторы космической НФ обычно ничего не знают). Мысль о том, что можно подойти к планете под углом к плоскости эклиптики, просто не укладывается в голове у большинства писателей, причем зачастую — вполне уважаемых, вроде Симмонса. И возникают в их воображении могучие оборонительные пояса — орудия и ракетные шахты на астероидах… Но даже если завоеватели решат прогуляться через всю систему, любуясь ее достопримечательностями, вряд ли такая плотность оборонительных точек задержит их хоть ненадолго.

Еще один любопытный момент — это способы предотвращения столкновения с астероидом. Предположим, нам в лоб летит здоровый булдыган в пару километров в диаметре. Уворачиваться же у вас возможности нет или просто лень. Как избежать лобового тарана?

Не мудрствуя лукаво, космические фантазеры просто обстреливают эти астероиды из имеющегося оружия, в результате чего кусок камня взрывается в пух и прах, его обломки разлетаются в разные стороны, а счастливые астронавты благополучно продолжают свой путь. Возможно ли это? Как известно еще со времен Ньютона, сила равна произведению массы на ускорение. Следовательно, чтобы свернуть с пути махину силовыми методами, потребуется попасть в нее чем-то либо очень тяжелым (сопоставимым по массе), либо движущимся с огромной относительной скоростью (при торможении этого чего-то о поверхность астероида и возникнет необходимое ускорение). Первый способ отпадает — не натаскаешься с собой запасов, даже с учетом эффектов на околосветовых скоростях. А второй… чем вы попадете в астероид и, главное, с каким результатом? Уязвимых узлов у него нет. При этом при слишком интенсивном воздействии на небольшую площадь вы, вполне возможно, добьетесь, что скала развалится на части. Но направления движения она при этом не изменит. Уверяю вас, вам будет сугубо параллельно, чем вас накроет в результате — монолитом или грудой льда и щебня. Результатом станут ошметки еще одного пропавшего без вести корабля. Вас не спасет даже атомная бомба: взрывная волна, как упоминалось выше, в вакууме отсутствует, а частичное расплавление поверхности астероида ничем не поможет. Разве что навечно сохранит в застывшем камне отпечатки ваших удивленных физиономий.

Стрелять по идущему на таран астероиду так же бессмысленно, как и по сходящей с горы лавине. Вероятный выход — полностью испарить его и попытаться выжить после удара раскаленным газовым облаком. Но потребное для этого количество энергии удручает.

Впрочем, вам может повезти в одном случае: если вы умудритесь мгновенно испарить большой приповерхностный ледовый карман. Взрыв пара сыграет роль своего рода маневрового реактивного двигателя, в результате чего астероид может достаточно уклониться с прежнего курса, чтобы избежать столкновения. Остается принять закон, по которому ни один астероид не имеет права разгуливать, не обвешавшись ледовыми глыбами…

Конструкции кораблей и планетарное сообщение. Поскольку человеку (как предполагается) будет свойственно не только шастать в космическом пространстве, но иногда и возвращаться на грешную почву, эта проблема относится к разряду ключевых. Причем не только в фантастике, но и в реальной жизни. Как известно, атмосфера обладает значительным сопротивлением. Поэтому основная задача аэродинамики заключается в конструировании обтекаемых воздушных и космических судов, способных на высоких скоростях и при этом не разрушаясь перемещаться в плотных атмосферных слоях. А скорости действительно высокие — корабль не может выйти на орбиту планеты и остаться там, если его скорость не превышает первой космической. Точнее, он не может проделать это эффективно, без колоссального расхода топлива. Разумеется, можно всю дорогу работать двигателями и со временем выползти на орбиту даже на скорости улитки, но потребное количество горючего относит такой способ к категории запретных. Следовательно, для того, чтобы покинуть гравитационный колодец, требуются гигантские скорости. А для их достижения, в свою очередь, необходимо придавать кораблям обтекаемую форму. Человеческое мышление, приученное к красоте полета хищных птиц, радуется схожести с птичьими самолетных форм. Однако на деле обтекаемость является серьезной проблемой при проектировании механизма, вынуждая плотно упаковывать его компоненты в зализанные оболочки. Из-за этого расположение узлов агрегата далеко не всегда оптимально, для обеспечения связности системы требуются вспомогательные механизмы (которые тоже требуют места и немало весят), наконец, возникают проблемы с охлаждением. Вероятно, конструкторы укажут и на другие проблемы, но для нас достаточно вышеперечисленного, чтобы осознать: обтекаемая форма является скорее недостатком, чем достоинством летательного аппарата. Следовательно, она будет применяться только в случае реальной необходимости.

Из этого следует банальный вывод, к которому прогрессивное человечество пришло десятилетия назад: скорее всего, космические корабли разделятся на два непересекающихся класса: атмосферные транспортные челноки и заатмосферные корабли. При этом последние в целях удешевления вряд ли будут обладать возможностью посадки на планеты с атмосферой или даже просто временного входа в газовую среду, а их конструкция в общем и целом потребует лишь прохождения векторов главной тяги через центр масс. Ну, и общей прочности, разумеется, чтобы не разваливаться при ускорениях. Разнообразные космические штурмовики и бомбардировщики вряд ли станут исключением из правила. Поэтому эпизоды наподобие посадки Люка Скайуокера на планету мастера Йоды в свом верном X-Wing не пройдут.

Созвездия. Вообще говоря, известно, что созвездия формируются зачастую далеко отстоящими друг от друга звездами. Кроме того, каждый школьник знает, что понятие созвездия применимо только к конкретной точке пространства. Сместись на пару парсеков в сторону — и рисунок звезд неузнаваемо изменится. Однако нет-нет, да проскальзывает в фантастике (начиная еще с Гамильтона) могучая империя (или республика), обосновавшаяся, скажем, в созвездии Ориона. При этом расстояния от Земли до Бетельгейзе, Ригеля и Беллятрикс (Альфы, Беты и Гаммы Ориона) составляют соответственно 650, 1076 и 240 световых лет. Империя протяженностью в восемьсот с лишком световых лет — нехило, э?

Оставить комментарий

Предыдущие записи блогера :
Архив записей в блогах:
И ничего не могу с собой поделать, это Она! ...
Судя по всему, гомосексуалист будет рулить не только Германией, но и всем Евросоюзом, ведь ФРГ - его локомотив. И внутри Евросоюза прослеживается четкий диктат Германии, экономический фактор здесь решающий. При этом Евросоюз явный пассив по отношению к Соединенным Штатам. Так что такое ...
Ну что хочу сказать, похерила я свой проект. Ибо потому что так и знала) ну, необязательная, одним словом! фотографирую каждый день, а вот соц сети требуют столько внимания, что руки не доходят! только инста у меня еще на коротком поводке!!! так что, хотела как лучше, а получилось как ...
Девочки, а расскажите мне о том, что бы вы хотели получить в подарок на восьмое марта. Мне для работы надо. Высказывайте как самые смелые желания, так и наиболее вероятные ...
На мой взгляд, Руслан прав . Достаточно просто не выпендриваться, принять статус, предлагаемый партнерами, и все будет достаточно хорошо. Или, во всяком случае, размеренно и спокойно: Никто не станет обижать знающего свое место. Больше того, весьма высока вероятность, что е ...