JET начинает новую дейтерий-тритиевую кампанию
![топ 100 блогов](/media/images/default.jpg)
Крупнейший в мире токамак JET после 18
месяцев подготовки и ремонта восстанавливает работу с целью начать
в следующем году запуски с реальной дейтерий-тритиевой плазмой.
Подобные эксперименты не проводились на токамаках с середины 90х
годов и пришло время накопившиеся новые идеи
экспериментально.
Композиционное изображение камеры токамака JET (диаметром около
8 метров) и плазмы во время экспериментов.
Именно здесь, на JET в 1997 году был поставлен рекорд мощности термоядерной реакции для магнитных ловушек - 16 мегаватт в течении примерно 100 миллисекунд. Длительность тогда, впрочем, ограничивалась длительностью работы системы инжекции нейтралов, отвечающей за внешний нагрев плазмы. Сегодня эти ограничения гораздо мягче, поэтому есть планы продержать 16-мегаваттное горение в течении ~5 секунд. Опять же, дольше нельзя, т.к. есть определенный лимит на общее облучение конструкции вакуумной камеры термоядерными нейтронами.
![JET начинает новую дейтерий-тритиевую кампанию JET начинает новую дейтерий-тритиевую кампанию](/images/main/jet-nachinaet-novuyu-deyteriy-tritievuyu-kampaniyu-1888ce.jpg?from=https://s5.postimg.cc/fk5nnsjbb/2018-06-03_10-55-26.png)
Профили рекордных по мощности термоядерных экспериментов и планируемое будущее
Важным изменением по сравнению с 1997
стал перевод реактора на полностью металлическую облицовку -
исчезли углепластиковые и графитовые элементы. Последние в свое
время помогли снизить загрязнение плазмы материалами с высокими
атомными номерами и пройти так называемый “радиационный барьер” на
пути к термоядерным температурам. Однако, со временем стало
понятно, что металлическая стенка с точки зрения эксплуатации все
же лучше - меньше пыли, меньше “застревающего” в конструкции
трития.
Элемент дивертора ИТЭР, недавно изготовленный европой -
облицовка из вольфрамовых блоков и активное охлаждение. На прямую
часть приходится (под острым углом) поток плазмы мощностью 5-10
мегаватт/м^2
Кроме взаимодействия трития с перспективной (запланированной и на ИТЭР) полнометаллической стенкой, будут также проверены решения по подавлению ELM-неустойчивостей с помощью специальных пушек, стреляющих замороженными дробинками из DT-смеси, ну и множество идей токамачников по поведению плазмы.
В ходе “экспериментальной DT кампании №2 - DTE-2” также, впервые в истории, планируются плазменные эксперименты на чистом тритии. Поскольку отношение заряд/масса у трития в полтора раза больше, чем у дейтерия, на множестве явлений, чувствительных к этому отношению, можно будет сравнить моделирование и эксперимент.
По планам ближайшие несколько месяцев
произойдет пуско-наладка машины, а затем примерно 5-месячная
калибровочная серия физических экспериментов на дейтерии. После
примерно 1-месячной проверки атомным надзором Великобритании
готовности всех систем к работе с тритием начнется 3-х месячная
физическая TT программа. Далее последуют дополнительные тренировки
по безопасности, еще одна приемка, и наконец - сама четырехмесячная
DTE-2.
Самый первый запуск JET после
перерыва на водородной плазме. Ускорено в 40
раз.
Долгий и сложный заход в эту программу экспериментов связан как с неприятностью самого трития, так и с наведенной радиоактивностью в результате термоядерной реакции.
Тритий - легколетучий, как любой водород, пожароопасный и крайне радиоактивный газ. Для работы с ним приходится все оборудование устанавливать в герметичные перчаточные ящики, трубопроводы окружать герметичными вторыми оболочками, здание оборудовать системой понижения давления (чтобы снизить вероятность утечки наружу) и уменьшения содержания кислорода (для предотвращения пожаров, которые будут ночным кошмаром в случае трития). Всего на площадке может находится не больше 20 грамм трития, хранимого в виде гидрида(трейтида?) урана, и выдаваемого в систему нагревов. Но сожжено во всех экспериментах будет всего порядка 1 миллиграмма. Такая большая разница между “складом” и потребностями объясняется тем, что при проходе через плазму сгорает очень небольшая доля трития, а остальное, к сожалению загрязняется дейтерием и протием, после чего смесь надо отправлять на разделение изотопов - а этой системы на площадке JET нет.
![JET начинает новую дейтерий-тритиевую кампанию JET начинает новую дейтерий-тритиевую кампанию](/images/main/jet-nachinaet-novuyu-deyteriy-tritievuyu-kampaniyu-1cc173.jpg?from=https://s5.postimg.cc/khxgxd8wn/2018-06-03_16-47-09.png)
Второй важнейшей инженерной задачей
здесь (и в будущем - на ИТЭР) станет работа с активированной
конструкцией. В конце DTE-2 радиационный фон в центре вакуумной
камеры достигнет 80 мЗв/ч (8 рентген в час), поэтому для работы
внутри будет применятся телеуправляемая робототехника. В ходе
подготовки на ней уже тренировались в замене плиток, установке
новых, установке различных датчиков и т.п.
Телеуправляемый робот внутри JET
На мой взгляд, подобный программы с одной стороны важны для подготовки запуска полноценной дейтерий-тритиевой кампании на ИТЭР, а с другой стороны подчеркивают невероятные сложности по работе с DT-реакцией. В условиях, когда термоядерная энергетика не является “спасительной соломинкой” для цивилизации, сложно ожидать ставки на DT-реакторы.
|
</> |