Вопросы и ответы по ИТЭР

топ 100 блогов tnenergy24.09.2016

Q: Что такое ITER?

A: ITER (ИТЭР, International Thermonuclear Experimental Reactor) - экспериментальный термоядерный реактор на базе концепции токамака. Проектирование в несколько подходов (разных вариантов) шло с 1992 по 2007 год, сооружение - с 2009 по настоящее время (и продолжается). Токамак ИТЭР будет примерно вдвое больше предшественников по всем размерам, примерно в 10 раз объемнее и тяжелее, в 15 раз дороже, и в 25 раз мощнее с точки зрения термоядерной мощности.


Q: Какие у него цели?

A: Набор основных задач ИТЭР можно ранжировать так


  • Продемонстрировать возможность управляемого термоядерного синтеза с временем горения и мощностью промышленного масштаба.


  • На практике столкнуться и решить инженерные вопросы создания термоядерного реактора промышленного масштаба - при всей банальности это одна из важнейших и сложнейших задач ИТЭР, без которой невозможно понимание перспектив развития термоядерных электростанций в целом.


  • Исследовать оставшиеся вопросы физики плазмы токамаков, в т.ч. возможно найти какие-то ее особенности, которые упростят создание промышленных термоядерных реакторов.


  • На практике разработать и опробовать технологию размножающих тритий бланкетов - совершенно необходимая деталь для токамаков, ориентирующихся на термоядерную реакцию слияния дейтерия и трития.


  • Накопить опыт организации строительства и эксплуатации термоядерных реакторов/электростанций



Q: А какая мощность у ИТЭР?

A: Начнем с того, что ИТЭР не будет вырабатывать электроэнергию - все тепло будет просто сбрасываться в градирни системы охлаждения. Турбина оказалась малосовместима с импульсными режимами работы, которые освоены для токамаков на сегодня (о них ниже) и интересами ученых. Поэтому получается, что мощностей у ИТЭР довольно много, давайте их перечислим:


  • Мощность сбрасываемая в градирни всеми источниками тепла, максимальная - 1150 мегаватт.


  • Мощность, выделяющаяся в плазме в разных режимах токамака от 250 до 700 мегаватт.


  • Из них мощность термоядерной реакции от 200 до 630 мегаватт, а остальное вкладывается системами нагрева плазмы.


  • При этом сам ИТЭР потребляет значительную мощность от “розетки” - порядка 600 мегаватт в момент горения (или как его называют - выстрела) плазмы и около 110 мегаватт при подготовке


  • Еще большее количество энергии циркулирует в системе электропитания сверхпроводящих магнитов - из-за необходимости изменять ток в магнитах во время плазменного выстрела в системе магниты - реактивная компенсация гуляет около 2 гигаватт реактивной мощности. Из “розетки” эта система потребляет около 250 мегаватт, входящих в 600 общего потребления.


Таким образом, получается, что хотя с физической точки зрения ИТЭР, его термоядерная мощность в 10 раз превосходит мощность нагрева, с инженерной точки зрения ИТЭР не дотягивает даже до единицы. Однако связано это скорее не с принципиальной невозможностью, а оптимизацией затрат - пока выгоднее сделать токамак импульсным и не вырабатывающим энергию.


Q: А что значит импульсный? Сколько времени будет длиться “импульс” в ИТЭР?

A: Одной из важных составляющих удержания плазмы в токамаке является кольцевой ток, который течет в этой плазме. Изначально, для простоты он всегда поддерживался по принципу трансформатора - если мы поместим в центр токамака большую катушку (называемую центральный соленоид или индуктор)  и начнем изменять в ней ток, то по плазме потечет ток. Такой режим называется индуктивным. Однако таким образом можно поддерживать ток плазмы ограниченное время - пока ЦС перекидывается от максимального к минимальному значению тока в себе. В ИТЭР используется абсолютно рекордный центральный соленоид массой ~1000 тонн, и его запаса энергии хватает  на 400 секунд горения на номинальной мощности 500 мегаватт, или 100 секунд с током 17 МА, на которой мощность будет ~700 мегаватт.


Существует возможность и поддержания тока плазмы с помощью радиочастотных систем и инжекторов нейтрального пучка. На первой стадии ИТЭРу будут доступны режимы с мощностью до 400 мегаватт при длительности 1000 секунд, после апгрейда 3 инжектором нейтрального пучка и нижегибридным радиочастотным нагревом - вплоть до часовых “импульсов” горения на мощности 400 мегаватт - и тут ограничениями уже выступают буферные емкости криосистемы и системы охлаждения.


Q: ИТЭР не будет иметь турбогенератора для выработки электроэнергии? Но неужели нет других получать электричество из энергии термоядерного горения?

A: Как я уже отметил выше - турбогенератора у ИТЭР нет в основном по причинам не желания привносить еще и проблемы энергогенерации в инженерно-физическую установку.


Другие варианты, кроме классической паротурбинной схемы есть. Однако необходимо вспомнить, что 86% энергии термоядерной реакции дейтерий-тритий уносится нейтронами, и извлечь из них энергию можно только затормозив их в куске материала, который от этого нагреется. Получается, что для дейтерий-трития единственными вариантами с высоким кпд остаются тепловые машины - будь то паротурбинная установка или газотурбинная или парогазовая.


Для других видов термоядерных реакций распределение каналов ухода энергии из плазмы другое. Если посмотреть на 3 основные альтренативы дейтерий-тритию DT: DD, DHe3, pB11 - то здесь основным каналом потери становится электромагнитное излучение - от СВЧ радиоволн до жесткого рентгена в случае pB11. Теоретически здесь как минимум часть энергии можно получать с помощью каких-то аналогов солнечных батарей (фотовольтаики), но на сегодня эта тема плохо изучена. Еще одним механизмом может быть отбор части горячей плазмы и прямое преобразование ее энергии в электричество, устройства, способные это делать существуют и испытывались на плазменных устройствах (открытой ловушке Gamma-10). Однако инженерные перспективы подобного подхода неясны.


Q: А что с топливообеспечением? Тритий - искусственный элемент с периодом полураспада 12 лет, где ИТЭР возьмет его?

A: Сегодня в мире основными наработчиками трития выступают тяжеловодные реакторы CANDU, из которых извлекают порядка 2 кг трития в год. ИТЭР потребует 3 кг для зарядки всех своих тритиевых подсистем, и примерно 1 кг за каждый год работы. Т.е. пока тритий потребляет только ИТЭР и работают CANDU - проблем нет. Однако если термоядерные реакторы на принципе DT токакмаков продолжат развиваться, то им понадобится самообеспечение по тритию, для чего на ИТЭР будет отрабатываться технологии размножающего бланкета, в котором потоком нейтронов из плазмы изотоп Li6 будет делиться с получением трития.


Q: А когда ИТЭР наконец построят и запустят? И сколько он стоит?

А: Проект международного термоядерного реактора очень долго не мог выбраться из обсуждений, доработок и переделок, и только в последние пару лет строительство и производство компонентов набрало темп. Сегодня начало сборки реактора в шахте намечено на 3 квартал 2019 года, а окончание и первый запуск - на декабрь 2025. Однако первый запуск будет на “голой” машине, лишенной основной части систем диагностики (изучения) и нагрева плазмы и возможности работать с тритием. После первой плазмы ИТЭР предстоит еще 8-10 лет в зависимости от финансирования, чтобы добраться до штатного оборудования и зажечь наконец термоядерную реакцию мощностью 500 мегаватт.

Стоимость ИТЭР в свою очередь - очень сложная материя. По идее просуммировать расходы участников, но не все они достоверно известно, кроме того финансирование ведется по сложной схеме - основная денег тратится на разработку и производство оборудования, которая каждая из стран обязалась поставить в проект в натурном виде, а часть передается деньгами в общий "котел" для работ международного агенства ИТЭР, которое занимается проектированием части машины, координацией, сборкой и т.п. Общие расходы сейчас оцениваются в 22 миллиарда евро, что автоматически ставит ИТЭР на первое место по стоимости среди научных установок.


Q: Вроде как у термоядерных реакторов есть проблемы со стойкостью материалов. Есть ли оценки сколько часов/лет работы реактора на полной мощности выдержат без особого структурного повреждения стенки реактора (тора токамака) из специальной стали?


A:Термоядерная плазма опасна для конструкций реактора, обращенной к ней электромагнитным и нейтронным излучением. Электромагнитное излучение поглощается интенсивно охлаждаемыми металлическими поверхностями, и грозит перегревом (короблением, плавлением и т.п.) только в случае отказа охлаждения.


С нейтронным потоком сложнее: мгновенный поток очень жесткий из-за высокой энергии нейтронов (в 14 раз выше, чем в быстром реакторе), и довольно высокий флюэнс (плотность потока нейтронов), всего в 10 раз ниже, чем пиковый в ядерном реакторе.


Но при этом интегральная величина за время работы не так велика — ИТЭР же импульсный и экспериментальный, а это важно для оценки степени повреждений материала.


В итоге, живучесть первой стенки (а это основная деталь, подверженная электромагнитными и нейтронным нагрузкам) — 5 лет, причем определяется не структурными повреждениями как таковыми, а в основном плазменной эрозией и деградацией медного теплоотводящего основания (тут уже как раз из-за нейтронов). Для сравнения — нагрузка ПС до съема будет 0,3 с.н.а, а нагрузка, скажем, выгородки ВВЭР-1000 до съема — 30 с.н.а., нагрузка оболочек твэлов в быстром реакторе — 60 с.н.а. и в перспективных материалах — 100+ с.н.а.


Однако при достижении коммерчески интересных параметров термоядерного реактора повреждения внутренних конструкций излучениями плазмы становятся определяющими. Для поиска новых материалов в японии сооружается новая лаборатория IFMIF.


Q: Говорят, что ИТЭР дает чистую энергию, т.е. без радиации, как у ядерных реакторов. Но если есть нейтроны, то по идее это не так?


A: ИТЭР будет ядерно-опасным объектом, но заметно менее опасным, чем ядерные реакторы. У меня есть специальная статья, сравнивающая эти два типа.

Оставить комментарий

Предыдущие записи блогера :
Архив записей в блогах:
Побывать на самом опытном заводе Санкт-Петербурга (завод был основан ещё в 1857 году), сегодняшнем лидере отечественного газотурбинного машиностроения, даже для искушенного любителя промышленности - это большая удача. А учитывая тот факт, что я неровно дышу к энергетике, так это вообще ...
Из-за профессии меня часто удивляли двигатели танков выдающих 1200 л.с. и весящих 750 кг при этом.   А судя по фразам вроде: «Хрен с ней с мощностью, Вы на массу движков посмотрите, что же за дура там такая весом аж полторы тонны, ...
DSC_0626.jpg © mirielle_elenna.iMGSRC.RU DSC_0596.jpg © mirielle_elenna.iMGSRC.RU DSC_0598.jpg © mirielle_elenna.iMGSRC.RU DSC_0603.jpg © mirielle_elenna.iMGSRC.RU DSC_0625.jpg © mirielle_elenna.iMGSRC.RU ...
Напугать вас? Не-не, я ни при чем, лежала, никого не трогала...ваапче за вечер только пару раз волновалась, так и то злорадно и коварно... Простите. А меня лучще радовать кстати, яж солнце)) ...
Если взглянуть на Саакашвили со стороны, то: 1. Бывший президент едет на гастроли в другую страну. 2. Получает украинское гражданство. 3. Становится губернатором. 4. Лишается грузинского гражданства. 5. Лажает на должности губернатора не сделав ничего. 6. Организовывает несколько ...