Кто спасёт возобновляемую энергетику? Истина в модели

топ 100 блогов engineering_ru22.03.2017 Оригинал взят у Кто спасёт возобновляемую энергетику? Истина в модели celado в Кто спасёт возобновляемую энергетику? Истина в модели
Кто спасёт возобновляемую энергетику? Истина в модели Человечеству хочется всего, побольше и аппетит растёт экспоненциально. А любые потребности подразумевают и энергию: если 100 лет назад человечество потребляло 50 эксаджоулей в год, сегодня 500 ЭДж, то где достать 5000 ЭДж к концу века и так далее? Перефразируя классика: “Бесконечность энергии лучше конечности наличием бесконечности”. На данный момент существует несколько решений и одно из них это Возобновляемые Источники Энергии (ВИЭ).

Электрогенерация эпохи ХХ века имеет фундаментальные недостатки, требующие современного решения: где-то в связи с глобальным потеплением дневные температуры поднимутся до +60, кого-то затопит поднявшимся океаном. России это касается мало, но наши соотечественники гибнут в угольных шахтах, сокращается продолжительность жизни населения из-за выбросов тепловых электростанций и так далее. Иными словами, обсуждаемый вопрос для всех важен и холиварен, и мы постараемся пролить немного точности и конкретных цифирок на него.


Эксперименты с ВИЭ - есть результаты

Например, Дания удовлетворяет уже почти половину своего годового электропотребления за счёт ветряной энергии. Единственную проблему ВИЭ - непостоянство генерации - страна решает импортом электроэнергии у соседей, которым больше повезло в этот момент с ветром, солнцем или ещё чем-нибудь. Таким образом, для светлого возобновляемого будущего родилась и нашла частичное подтверждение концепция перетоков, когда одна страна Европы протягивает руку “ветра” или “солнца” другой стране и вроде все счастливы, да ещё и с ВИЭ. Концепция перетоков может работать только в случае ветряной энергии, так как солнце ночью “выключается” над достаточно большой территорией. Но помимо перетоков электроэнергию (э/э) можно аккумулировать.

На словах концепции перетоков и аккумуляции хороши, а что будет на практике в случае, например, Германии? Если для маленькой Дании у соседей всегда найдётся лишний гигаватт, то найдутся ли у соседей лишние 60 гигаватт для Германии? А сколько нужно аккумуляции? Гипотезы проверяются экспериментом, для чего нам понадобилась бы вторая Европа с альтернативной энергосистемой. Поэтому мы решили смоделировать всё описанное выше: перетоки ветряной энергии между европейскими странами и аккумуляцию в условиях реальной ветряной и солнечной генерации.

Перетоки между странами

Представим себе, что ветряки и солнечные батареи равномерно стоят по всей Европе и вся территория окутана многочисленными линиями электропередач, позволяющими перебрасывать электроэнергию с одного конца Европы на другой. При штиле в Германии крутится ветряк в Англии, а если безветрие и там, то выручает Испания. Или Греция. Мы взяли реальные данные генерации с ветряков по нескольким европейским странам за 2015-й год, нормировали их на одинаковую мощность и выровняли между странами - получилась более ровная генерация, эмулирующая перетоки между странами. Например, январь:

Кто спасёт возобновляемую энергетику? Истина в модели

Генерация с ветряков выровнялась, но эффект умеренный: различия между соседними минимальными и максимальными уровнями трёхкратны. При этом, потребление электроэнергии тоже неравномерно и совместно с неравномерностями “ветра” образуются ещё большие дисбалансы. Для построения же “ветряной Европы” выровненную генерацию нужно увеличить и дисбалансы будут очень существенны. Ниже график разных увеличений генерации, где за единицу принят выровненный и нормализованный ветер по европейским странам:

Кто спасёт возобновляемую энергетику? Истина в модели winds_and_load2

Шестикратный “ветер” в целом чуть ниже потребления и образуются провалы, когда ветряная генерация обеспечивает только 30% от нужд. Если же попытаться закрыть эти провалы девятикратным “ветром”, то всё равно будут дыры в 100 ГВт, а избыток генерации составит 20%. Первые нужно чем-то крыть, а вторые это просто потерянная энергия, увеличивающая себестоимость. То есть, концепция “перетоков” сама по себе не решает.

Аккумуляция и модель

Второй способ обеспечить постоянство ВИЭ это аккумуляция электроэнергии в периоды высокой генерации и разрядка при низкой. На словах, опять же, звучит здраво, но судья гипотезе - эксперимент. Предлагаемая модель работает просто: если генерация с выровненного и нормализованного “ветра” и “солнца” больше чем потребление электроэнергии, то идёт зарядка аккумуляторов. Если меньше, то разрядка. Потребление и солнечная генерация тоже взяты с реальных почасовых данных европейских стран за 2015-й год.

Если сумма не дотягивает до потребления, а аккумуляторы пусты, то включается газовая генерация - без неё никак, не помирать же. Газовые ТЭС - друг ВИЭ и в отличие от угольных электростанций они встречаются в любой модели, посвещённой будущим энергосистемам. Во-первых, они могут окупаться, работая лишь пару недель в году - угольные так не могут из-за неподходящей структуры себестоимости (высокая доля капитальных расходов). Во-вторых, у газовых ТЭС гораздо меньше вредных выбросов.

Играясь с моделью можно увидеть, что полностью перевести электрогенерацию на ВИЭ крайне сложно. Перебрав 30000 комбинаций кратности “ветра”, “солнца” и объёма аккумуляции, мы нашли наиболее дешёвую для полного удовлетворения электропотребления за счёт ВИЭ. А именно: 12-кратный “ветер” (1230 ГВт), 7-кратное “солнце” (385 ГВт) и 3000 ГВт*ч аккумуляции (⅔ среднесуточного потребления). Для февраля, одного из самых неудобных месяцев, всё выглядит так:

Кто спасёт возобновляемую энергетику? Истина в модели gen3

Что бросается в глаза при данном сценарии:

1. Генерация с ветряков почти постоянно превышает потребление. Это потребовалось для закрытия редких провалов, когда ветер ослабевает по всей Европе (11-12 февраля). В теории, провалы можно закрывать с помощью увеличенной солнечной генерации или большей аккумуляции, но получится дороже. Поэтому в данном раскладе теряется 44% электроэнергии, которая не влезла ни в потребление, ни в аккумуляцию.

2. Аккумуляторы простаивают без дела: постоянно забиты и за год только 8,5 циклов зарядки/разрядки (1% от всего потребления электроэнергии). Раз простаивают, значит вложения сложно окупить и с аккумуляторов электроэнергию придётся продавать в 25 раз дороже.

3. Главную роль играет “ветер” (подобие базовой генерации), а солнце на подмоге. Если считать по установленной мощности (ГВт), то “ветра” в 3 раза больше, если по генерации электроэнергии (ГВт*ч), что корректнее, то “ветра” в 6 раз больше.

4. Из-за первых двух факторов себестоимость электроэнергии выросла с идеальных $77 за МВт*ч (заложенных в модель как нечто среднее по реальной себестоимости) до $205. Стоимость инфраструктуры для выравнивания играет небольшую роль, так как меркнет на фоне нескольких триллионов долларов на “ветер”, “солнце” и аккумуляцию - именно во столько это обойдётся при текущих ценах. И десятки лет на производство, если забыть об остальных покупателях.

По размеру и сложности описанная энергосистема (целиком на ВИЭ) больше подойдёт даже не середине ХХI века, а концу, и, скорее всего, наше поколение будет лицезреть соседство квантовых компьютеров, искусственного интеллекта и “кипятильников” на угольных и газовых электростанциях.

Кто спасёт возобновляемую энергетику? Истина в модели screenshot_4

Таким образом, как и упоминалось в наших прежних публикациях и концепции “Мира на пике”, человечеству придётся ещё много десятилетий выжимать последние соки из традиционных источников энергии. К слову, текущий ориентир передовой Германии по доле ВИЭ в 2050 году это 80%.

Нет худа без добра

Но есть и положительные моменты. Сложность энергосистемы с ростом доли ВИЭ растёт нелинейно и переход от текущей доли в модели в 16% к тем же 80% проще, чем от 80% к 100%. Прогон по комбинациям с долей ВИЭ в 80% дал такие результаты оптимального сочетания: 615 ГВт “ветра” (6х), 165 ГВт “солнца” (3х), 193 ГВт газовой генерации и отсутствие аккумуляции. Тот же февраль:

Кто спасёт возобновляемую энергетику? Истина в модели akk5

Потери составляют относительно скромные 6%, а себестоимость электроэнергии - $102,5 за МВт*ч. Превышение над идеалом составляет $25 за МВт*ч, куда входят потери и выравнивание, а также установка и использование газовой генерации.

Этот сценарий проливает свет и на необходимость резервировать ВИЭ традиционной генерацией, в нашем случае - газовой. Максимальное потребление в модели составляет 267 ГВт, а газа придётся установить под 200 ГВт. То есть, несмотря на идеальное выравнивание и доли ВИЭ в 80%, почти всю энергосистему придётся резервировать традиционной генерацией.

Касательно отсутствия аккумуляции: на данный момент это банально очень дорого (в модель заложена цена в $250 за кВт*ч). Во-вторых, “ветер” плохо дружит с аккумуляцией: периоды сильного и слабого ветра длятся днями, соответственно и объём аккумуляторов нужен на несколько дней потребления (10’000-20’000 ГВт*ч). Для сравнения - современные мировые производственные мощности составляют около 100 ГВт*ч в год. Такой объём будет редко и мало использоваться, а значит будет сложно окупить. Лучше с аккумуляцией дружит “солнце”, которое будет заряжать и разряжать аккумы каждый день, но из-за низкой зимней инсоляции их придётся ставить слишком много и летом энергия будет теряться, увеличивая себестоимость.

Конечно, данная модель много чего не учитывает и вряд ли вся Европа будет окутана интерконнекторами на десятки ГВт - нас интересовали концепции на принципиальном уровне и общая ситуация. В мессенджере “телеграм” мы запустили бота(Celado_bot), в чате с которым можно лично смоделировать поведение энергосистемы, задав интересующие параметры “солнца”, “ветра” и аккумуляции. Чуть позже такая возможность появится на нашем сайте.

Итак, кто же спасёт возобновляемую энергетику? При очень большом желании действительно можно построить энергосистему полностью на ВИЭ, спустив на “спасение” концепции несколько триллионов долларов (в текущих ценах) и в результате поиметь заоблачные цены на электроэнергию. При долях меньше 100% спасти ВИЭ может тотальное резервирование газовой генерацией.

Вячеслав Лактюшкин, специально для celado.ru

Оставить комментарий

Предыдущие записи блогера :
Архив записей в блогах:
Сегодня ездили в Мегу по важным делам. В итоге важные дела не сделали, но приобрели важную общую идею, а помимо этого полежали на кроватях, посидели на диванах, я покопала гвозди садовым совком и залипла на мишку с сердечком в Икее. И так сильно залипла, что не смогла его от себя ...
Давайте коротко и ясно этот отдельный момент разберем: как от щипцов падает СЗ. Сначала разберем, почему этого никто не замечает. Все щипцы имеют одну особенность. При увеличении давления они дают сиюминутный эффект, а потом отрицательную динамику СЗ. Люди видят сиюминутный эффект, а ...
Митрич крепко стоит на тоненьких ножках в сандаликах. Он попирает землю, полную реальных вещей. Митрич верит в муравьев, птиц, песок и самолеты. Из мифических существ он с натяжкой признает лишь Деда Мороза, и то потому, что тот приносит подарки. Дед для Митрича то же, что для нас ...
Абсолютно реальная история. Одна знакомая в прошлом году вышла замуж за турка. И вот к чему это привело. Познакомилась пара на почве, так сказать, профессиональной деятельности. Лена торговала одеждой и обувью в павильоне ростовского ТЦ, а Ахмед был её поставщиком, привозил товар из ...
...